Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
نویسندگان
چکیده
Several recent works have explored stochastic gradient methods for variational inference that exploit the geometry of the variational-parameter space. However, the theoretical properties of these methods are not well-understood and these methods typically only apply to conditionallyconjugate models. We present a new stochastic method for variational inference which exploits the geometry of the variational-parameter space and also yields simple closed-form updates even for non-conjugate models. We also give a convergence-rate analysis of our method and many other previous methods which exploit the geometry of the space. Our analysis generalizes existing convergence results for stochastic mirror-descent on non-convex objectives by using a more general class of divergence functions. Beyond giving a theoretical justification for a variety of recent methods, our experiments show that new algorithms derived in this framework lead to state of the art results on a variety of problems. Further, due to its generality, we expect that our theoretical analysis could also apply to other applications.
منابع مشابه
Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence
Several recent works have explored stochastic gradient methods for variational inference that exploit the geometry of the variational-parameter space. However, the theoretical properties of these methods are not well-understood and these methods typically only apply to conditionallyconjugate models. We present a new stochastic method for variational inference which exploits the geometry of the ...
متن کاملKullback-Leibler Proximal Variational Inference
We propose a new variational inference method based on a proximal framework that uses the Kullback-Leibler (KL) divergence as the proximal term. We make two contributions towards exploiting the geometry and structure of the variational bound. Firstly, we propose a KL proximal-point algorithm and show its equivalence to variational inference with natural gradients (e.g. stochastic variational in...
متن کاملStochastic Variational Inference with Gradient Linearization
Variational inference has experienced a recent surge in popularity owing to stochastic approaches, which have yielded practical tools for a wide range of model classes. A key benefit is that stochastic variational inference obviates the tedious process of deriving analytical expressions for closed-form variable updates. Instead, one simply needs to derive the gradient of the log-posterior, whic...
متن کاملAlpha-Divergences in Variational Dropout
We investigate the use of alternative divergences to Kullback-Leibler (KL) in variational inference(VI), based on the Variational Dropout [10]. Stochastic gradient variational Bayes (SGVB) [9] is a general framework for estimating the evidence lower bound (ELBO) in Variational Bayes. In this work, we extend the SGVB estimator with using Alpha-Divergences, which are alternative to divergences to...
متن کاملConjugate-Computation Variational Inference: Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Variational inference is computationally challenging in models that contain both conjugate and non-conjugate terms. Methods specifically designed for conjugate models, even though computationally efficient, find it difficult to deal with non-conjugate terms. On the other hand, stochastic-gradient methods can handle the nonconjugate terms but they usually ignore the conjugate structure of the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016